skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Conlon, Ronan J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Let 𝐷 be a toric Kähler–Einstein Fano manifold. We show that any toric shrinking gradient Kähler–Ricci soliton on certain toric blowups of C×D satisfies a complex Monge–Ampère equation. We then set up an Aubin continuity path to solve this equation and show that it has a solution at the initial value of the path parameter. This we do by implementing another continuity method. 
    more » « less
  2. We show that the underlying complex manifold of a complete non-compact two-dimensional shrinking gradient Kähler-Ricci soliton (M,g,X) with soliton metric g with bounded scalar curvature Rg whose soliton vector field X has an integral curve along which Rg↛0 is biholomorphic to either C×P1 or to the blowup of this manifold at one point. Assuming the existence of such a soliton on this latter manifold, we show that it is toric and unique. We also identify the corresponding soliton vector field. Given these possibilities, we then prove a strong form of the Feldman-Ilmanen-Knopf conjecture for finite time Type I singularities of the Kähler-Ricci flow on compact Kähler surfaces, leading to a classification of the bubbles of such singularities in this dimension. 
    more » « less
  3. A Riemannian cone (C,gC) is by definition a warped product C=R+×L with metric gC=dr2⊕r2gL, where (L,gL) is a compact Riemannian manifold without boundary. We say that C is a Calabi-Yau cone if gC is a Ricci-flat Kähler metric and if C admits a gC-parallel holomorphic volume form; this is equivalent to the cross-section (L,gL) being a Sasaki-Einstein manifold. In this paper, we give a complete classification of all smooth complete Calabi-Yau manifolds asymptotic to some given Calabi-Yau cone at a polynomial rate at infinity. As a special case, this includes a proof of Kronheimer's classification of ALE hyper-Kähler 4-manifolds without twistor theory. 
    more » « less
  4. We construct many new examples of complete Calabi-Yau metrics of maximal volume growth on certain smoothings of Cartesian products of Calabi-Yau cones with smooth cross-sections. A detailed description of the geometry at infinity of these metrics is given in terms of a compactification by a manifold with corners obtained through the notion of weighted blow-up for manifolds with corners. A key analytical step in the construction of these Calabi-Yau metrics is to derive good mapping properties of the Laplacian on some suitable weighted Hölder spaces. 
    more » « less
  5. We show that, up to the flow of the soliton vector field, there exists a unique complete steady gradient Kähler-Ricci soliton in every Kähler class of an equivariant crepant resolution of a Calabi-Yau cone converging at a polynomial rate to Cao's steady gradient Kähler-Ricci soliton on the cone. 
    more » « less